Top Products
Filter by
Didn't find what you are looking for? We're here to help!
134 Item(s) found
ETAP Star™ is an easy-to-use, interactive, and powerful platform for overcurrent protection and coordination studies. Supported with 100+ thousands of verified and validated protective device and equipment library models from manufacturers across the world, simulation and analysis of any network are at your fingertips. Learn about the intuitive and efficient approach for the creation of Time-Current Characteristic Curves and the program’s artificial intelligence (AI) for protection and coordination or selectivity analysis.
In this webinar, we introduce ETAP Unbalanced Network Short Circuit Analysis and demonstrate how to evaluate the impact of shunt and sliding faults on balanced and unbalanced networks: *Device Duty Evaluation for multi-phase, single-phase, AC & DC systems * Run and evaluate all fault types in one study * Shunt, series, and simultaneous faults * Simulate protective device responses to fault currents and configuration changes Unbalanced Network Short Circuit Standards: * ANSI C37.10 for AC systems * IEC 60909 for AC systems * IEC 61660 for DC systems
Learn about ETAP ArcSafety, an all-in-one AC & DC arc flash solution for LV, MV & HV systems that improves safety, reduces risk, minimizes equipment damage, and validates mitigation techniques.
In this video, we demonstrate how to use ETAP’s Lightning Risk Assessment (LRA) module to assess the risk of a lightning strike and the probability of damage. Learn about the LRA calculation methods used in ETAP and how to perform the LRA to comply with internationals standards NFPA 780-2020, 2014 and IEC 62305-2: 2010. Explore the important reasons behind Lightning Risk Assessment. From lightning as the number one cause of power surges, to preventing damage, fires and other harm to lives and property, accounting for unpredictable weather patterns and asset protection, as in buildings, power infrastructure, and human lives, ETAP's Lightning Risk Assessment module will calculate the possible risk to humans and infrastructure.
Learn how ETAP DC Arc Flash Analysis software calculates the incident energy for photovoltaic systems, while considering different methods such as Maximum Power, Stokes and Oppenlander, Paukert, DGUV-I-203-077. This presentation shows how ETAP applies the DC arc incident energy models developed in IEEE "Methods for Evaluating DC Arc Incident Energy in Photovoltaic Systems"
Learn how engineers use ETAP Harmonic Analysis software to simulate harmonic current and voltage sources, identify harmonic problems, reduce nuisance trips, design, and test filters, and report harmonic voltage and current distortion limit violations on balanced or unbalanced systems. Additionally, for transmission and distribution system operators, Harmonic Grid Code automates harmonic analysis for detailed power quality assessment reporting demonstrating the generation facility is designed to comply with applicable harmonic limits. Study reports include worst-case incremental and total harmonic distortion, frequency-dependent Thevenin Equivalent at PCC, and color-coded impedance loci charts.
The variable nature of renewable energy introduces power quality concerns, including frequency and voltage control, that may negatively impact the reliable performance of a power system. Grid codes, interconnection, or evacuation criteria must be followed during the proposed system design and continue to maintain compliance under grid-connected operation. ETAP Grid Code is a model-driven solution that includes software tools and control hardware to ensure local grid codes or standards compliance throughout the power system design and operations lifecycle.
Learn how to determine optimal cable sizes, physical attributes, and maximum ampacity using ETAP’s Underground Raceway System module, ensuring that cables in duct banks or directly buried are operating within their maximum potential capacity. The advanced graphical interface allows for design of cable raceway systems to meet existing and future needs by using precise calculations to determine the required cable sizes, physical capabilities, and maximum derated capacity / ampacity. In addition, transient temperature analysis computes temperature profiles for cable currents, reducing the risk of damage to cable systems under emergency conditions. All cable steady-state temperature calculations are based on the Neher-McGrath Method and the IEC 60287 Standard.
Learn how to determine optimal cable sizes, physical attributes, and maximum ampacity using ETAP’s Underground Raceway System module, ensuring that cables in duct banks or directly buried are operating within their maximum potential capacity. In addition, transient temperature analysis computes temperature profiles for cable currents, reducing the risk of damage to cable systems under emergency conditions. All cable steady-state temperature calculations are based on the Neher-McGrath Method and the IEC 60287 Standard.
This webinar outlines how ETAP Microgrid Control Solution devises and implements adaptive strategies to enable a smooth transition between grid-connected and islanded modes during unplanned islanding.